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Multiscale Mathematical Modeling to Support
Drug Development
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Abstract—It is widely recognized that major improvements are
required in the methods currently being used to develop new thera-
peutic drugs. The time from initial target identification to commer-
cialization can be 10-14 years and incur a cost in the hundreds of
millions of dollars. Even after substantial investment, only 30—40 %
of the candidate compounds entering clinical trials are successful.
We propose that multiscale mathematical pathway modeling can
be used to decrease time required to bring candidate drugs to clin-
ical trial and increase the probability that they will be successful
in humans. The requirements for multiple time scales and spa-
tial scales are discussed, and new computational paradigms are
identified to address the increased complexity of modeling.

Index Terms—Biological models, computational biology, drug
development, multiscale modeling.

I. INTRODUCTION

T is now well documented that we need to rethink the drug

development process that has been in use for the last 50
years [1], [2]. The traditional research pipeline begins with a
single biological target, searches through libraries of potential
drugs using in vitro methods to find a small number of suitable
candidates, uses animal testing to select the most promising
of these, proceeds to human trials to first establish dosages and
initial toxicity, and finally progresses to broad clinical trials with
individual drugs that survive these initial screenings.

Typically, the information created at any one of these steps
is not effectively shared with the other portions of the pipeline.
Clinical trial data are not incorporated in the modeling such that
the next round of animal experiments can be extrapolated with
better predictions of the human response. A need exists to define
semantic and predictive bridges between these important levels
of knowledge.

Manuscript received April 2, 2011; accepted August 24, 201 1. Date of publi-
cation October 24, 2011; date of current version November 18, 2011. This work
was supported in part by the Computational and Systems Biology Program of
the Singapore-MIT Alliance and additional funding was provided by the Heart,
Lung and Blood Institute of the National Institutes of Health under Grant RO1-
HL090856-02. Asterisk indicates corresponding author.

D. A. Nordsletten is with King’s College, London, SE1 8WA, U.K. (e-mail:
david.nordsletten @ googlemail.com).

B. Yankama and V. A. S. Ayyadurai are with the Massachusetts Insti-
tute of Technology, Cambridge, MA 02139 USA (e-mail: beracah@mit.edu;
vashiva@mit.edu).

R. Umeton is with Sapienza University, 00185 Rome, Italy (e-mail:
umeton @mat.unical.it).

*C. F. Dewey, Jr., is with the Department of Mechanical Engineering and
Bioengineering, Massachusetts Institute of Technology, Cambridge, MA 02139
USA (e-mail: cfdewey @mit.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TBME.2011.2173245

This paper addresses critical needs in drug development that
require multiscale computational modeling. The first is to lever-
age existing models and to build predictive models of the bi-
ological pathways. Although the use of modeling in drug de-
velopment is recognized as a key goal, current approaches are
frequently limited to a single drug and a single endpoint. Bot-
tino et al. [3] have provided an excellent example of how both in
vitro data and animal models can be combined using multiscale
modeling to predict the proarrythmic risk of a new drug prior to
human trials. Modeling is especially required if we are to move
from the current single drug discovery paradigm to one in which
both therapeutic and toxic response is predicted for treatments
that use multiple drugs.

The second key need is to improve the recycling of informa-
tion between the different process steps in drug development. In
particular, we see an attractive opportunity to integrate in silico
predictions of in vitro molecular pathway results with current
in vivo knowledge, to guide and improve the mathematical pre-
diction of biological outcomes. This means predicting how the
results in one animal model will be manifest in other test animals
and in humans. Heimbach et al. [4] provide impressive results to
demonstrate the value of combining actual clinical results with
predictive models to improve prediction. But allometric [5] and
single-point animal-human corrections cannot suffice because
many drugs and drug combinations exploit different biological
pathways, and the genetics of the animals may vary between
the different individual pathways [6]. Use of multiple levels of
animal testing incorporating quantitative modeling and appro-
priate analysis of genetic variation promises to create a robust
platform for accurately predicting both efficacy and toxicity be-
fore going to Phase 1 clinical trials [2]. A desired end point
would be a much higher percentage of successful drugs emerg-
ing from Phase 2 and Phase 3 trials. This process can be seen to
provide a framework to achieve personalized treatment options
for individual genotypes.

Examination of these two needs leads to three specific mul-
tiscale problems. First, expanding our fundamental approach to
predictive biology even at the level of a single cell entails a
massively complex scale of calculation. Methods to deal with
this complexity are proposed in Section III.

The second is the multiple time scales that occur at the molec-
ular level. Fig. 1 is an example of the large variation in time
scales observed with living cells. One needs to be able to repre-
sent each of the phenomena listed with sufficient time resolution
to provide an accurate account of the changes that are taking
place. This leads to serious computational problems that are
discussed in Section I'V.

The third is that there are many different types of interacting
tissues and organs, each with discrete volumes and length scales,

0018-9294/$26.00 © 2011 IEEE



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 58, NO. 12, DECEMBER 2011

K* channel activation
IP; and DAG elevation

luminal surface reorganization
cell alignment

cGMP increase G protein activation increased cell stiffness
Ca“Y increase MAP kinase signalling decreased FN synthesis
NO release NFkB activation thrombomodulin changes
PGIE release PDGF-J, c-jun histidine decarboxylase stimulation
bFGF upregulation enhanced LDL metabolism
pinocytosis stimulated induced MHC antigen expression
PRE 0-1min.
confluent endothelial aligned endothelial
¢NOS, tPA, TGF-f, monolayer

ICAM-1, c-fos, MCP-1
HSP 70 stimulation
endothelin-1 downregulation
focal adhesion rearrangement
golgi and MTOC rearrangement

Fig. 1.
flow (adapted from [7]).

Time scales describing the response of vascular endothelium to fluid

within which the presence or absence of a particular molecule
or cell may have different consequences. Section V examines
the current successes and limitations of the use of separated
but communicating biological compartments in meeting these
needs.

II. REQUIREMENTS FOR DRUG DEVELOPMENT
A. Need for Predictive Behavior

Imagine a single monolithic computational model predicting
the complete behavior of a single cell with hundreds of proteins
interacting inside the cell, tens of compartments such as the
nucleus and the golgi, over 30 important integrins for signaling
proteins, and dozens of membrane protein complexes that effect
ion transport and create transmembrane signaling pathways.
One would need probably 10° molecular pathways, each with
10-30 specific proteins and molecules, and a total of something
on the order of 10° ordinary differential equations (ODEs) to
describe their interactions.

The complexity of such a model, or any approximation to it,
would be enormous. The complexity is compounded by the fact
that each molecular pathway is literally a dynamic knowledge
domain in itself, with rate constants and reactions that are unique
to the particular process being described by the pathway and
subject to future revision.

A predictive model does not require all levels of complexity to
be visible simultaneously. Thus, details of the protein docking
dynamics at the subnanometer level with time scales in mi-
croseconds can appear as deterministic rate constants in higher
level models [8]. Similarly, complex pathways that govern the
production of key molecules may be represented as lumped
parametric sources [9].

Quantitative biological pathway models express known rela-
tionships and are not useful in identifying new biological con-
nections. One pathway discovery strategy is to use systems bi-
ology to design in vivo qualitative experiments that can identify
logical networks, as exemplified in the response of intestinal
epithelium to tumor necrosis factor-aw [10]. Quantitative rate
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Fig. 2. Design for a flexible and configurable cross-platform in silico model
to accelerate drug development.

constants can be generated from subsequent experiments based
on these qualitative networks.

Considerable progress has been made in understanding the
docking dynamics of potential drug molecules with known re-
ceptor targets [11]. Additionally, the use of in silico methods to
optimize the drug molecule binding properties has proven to be
highly successful, as in the case of alternative cancer drugs to
erbitux [12].

B. Need for Communication Between Process Steps

Next-generation drug development will require quantitative
models that can predict the major events known about drugs and
their targets along with automated means of maintaining and up-
dating the information about the model reactions. When a new
toxicity pathway is discovered in clinical trials, the information
must be fed back to the predictive models in a consistent and
transparent manner. As discussed in Section III, this argues for
a system that maintains the integrity of the individual biologi-
cal pathways and combines them “on the fly” to solve specific
problems.

Our experience [13] has convinced us that the key to success
in integrating information is to use ontologies as the base de-
scriptions for all data sources. These ontological descriptions
can then be used to facilitate machine-based queries and data
sharing. This approach can also be used to combine different
data repositories without the need to physically move or re-
arrange the existing primary sources. Further, these processes
can be aided and enhanced by machine reasoning and automa-
tion[14].

A diagram of our cross-prediction ontological platform is
shown in Fig. 2. We are constructing three robust ontological
knowledge platforms at the in vitro, animal, and human levels.
These platforms use existing standards (MIRIAM [15], GO [16],
GOA [17], OBO, UniProt [18], and others) and make use of
extensive curated ontology collections at the National Center
for Biomedical Ontology [19].

III. MULTISCALE COMPLEXITY

In Section II, it was pointed out that comprehensive biological
pathway models can require very large numbers of equa-
tions, molecular species, and separate biological compartments.
A critical task is assembling the known individual pathway
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models to create a large ensemble that is computable and nor-
malizes all the information contained within all of the individual
models. Our experience in several example problems quickly
demonstrated that the unaided human curation of two biolog-
ical pathways from different sources is marginally possible,
but assembling much larger pathways becomes a daunting and
error-prone task.

In addition, any complex model formed by merging individ-
ual models must be curated as new information is generated
about the reactions and their properties. This task can be readily
accomplished using the original individual models but becomes
nearly intractable when dealing with monolithic merged models.

We have made a significant investment in developing a new
computer-aided environment called Cyrosolve [20] that materi-
ally changes the ease and accuracy with which individual bio-
logical models can be merged, computed, and curated. It is based
on the strategy of keeping information in the individual path-
ways intact and combining the required pathways at the time of
computation. The philosophy is akin to the use of editable and
compile-able subroutines in a large software program, where
the subroutines can be individually edited and maintained. De-
tails of the merging process, such as the proper normalization
and identification of common input and output variables and
elimination of duplicate ordinary differential equation (ODE)
between collaborating pathways, are embedded in the individ-
ual pathways themselves. The merging is materially assisted by
a software program called OREMP [21], and the results from
OREMP are supervised by a human curator in the same way
that the projections of air traffic control radar calculations are
supervised by human air traffic controllers. Open use of the
Cytosolve package is available at http://cytosolve.mit.edu/.

IV. COMPLEXITY OF MULTIPLE TIME SCALES

The problem of managing adaptive time step size in integra-
tion of a single monolithic model is well documented and used
in current solvers of SBML models—SOSlib and CVODE—
which internally vary the time step of the solution to guarantee
convergence to the true solution. In that case, the problem of
modeling and analyzing response time scales is simply a func-
tion of running an ODE simulation for as large a time desired
and identifying the characteristic times a posteriori.

If we reject the approach that one creates very large mono-
lithic models and we choose to combine smaller models accord-
ing to their input and output parameters as with Cytosolve, then
the entire scheme of adaptive time stepping must be reexam-
ined. One can show that, for a simple set of reactions, sepa-
ration and simultaneous fixed stepping (of convergent solvers)
using a fixed time step no longer guarantees convergence both
in transient response and in steady-state conditions.

A. Combining Reaction Concentrations

In the first order, methods that support the joint simulation of
separate pathways can be executed explicitly via mass-balance
at intermittent time intervals ¢. That is, between two separate
model simulations M4 and Mp, the change in concentration
over some fixed Ar in My along a shared alignment point
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Fig. 3. Behavior of intermittent time synchrony of mass balance for two
asymptote problem. The solid line represents the true solution for M(0) slightly
< 0.5. Dotted lines are the solutions for x fixed steps.

(molecular species) must be propagated and combined with
Mp concentration change on the same point [20]. While this
guarantees conservation of mass, the individual changes in con-
centration in either M4 or Mp over that A7 may not completely
reflect how a fully monolithic model of M = (M4 & Mp)
would have behaved. A solution must also propagate the rates
of change from each model along that At back to the central-
ized controller which determines the stiffness of the transient
response over that interval and decides specifically whether to
reduce the time step size to lower error growth.

B. Problem of Two Asymptotes

To illustrate the difficulties arising with multiple solvers oper-
ating in parallel, we pose a test case in which what is a sufficient
time step for one solution is not necessarily a sufficient time
step for the other. This means that small errors in one model
calculation may lead to large errors in another linked model
calculation unless the time step is reduced to a very small value
or a special algorithm is used.

We consider a model consisting of two asymptotes and an
unstable nullcline at 0.5. In the true (monolithic) solution, if the
initial condition of this model starts at the nullcline M(0) = 0.5,
then it will remain there. If perturbed, or started above or below
the 0.5 value, the solution will increase or decrease to 1.0 or 0.0,
respectively. When the models are separately simulated, the time
step size may produce an error which drives the solution off of
the unstable asymptote onto the incorrect steady-state value. In
Fig. 3, the initial condition is started slightly below the nullcline,
and the error is sufficient to drive the solution from the lower
asymptote to the upper asymptote. This model is a simplistic
demonstration of the fact that new time-stepping methods must
be used. A solution has been obtained in restricted cases and a
more general solution and is currently in the final research phase
prior to publication [22].
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Fig.5. Joint simulation of BIOMD..84+BIOMD..4. The frequency of complex

inhibitor-cyclin is 50% higher and more triangular, and cyclin no longer purely
decreases.

C. Complexity in Combinations—Public Models

Tied to the problem of time scales is the problem of system
stiffness and complex coupled behavior. Consider the example
combination of two models from Biomodels.net [23] involving
cell mitosis, BIOMD..4 & BIOMD..8, where the reactions are
aligned on the species cyclin, protease, and cdc2k. Though both
models are designed a priori to be tuned mitotic oscillators,
Figs. 4 and 5 demonstrate that the interaction of the different
individual reactions significantly alters both the magnitude as
well as the tuned frequency of the oscillator.

V. SIMULATING SPATIAL VARIATION

Nearly all of the existing quantitative biological pathways
are written as ordinary differential equations in time. The reac-
tion A + B — C assumes the absence of spatial gradients of
the reactants, i.e., they occupy a well-mixed reactor. Even the
languages adopted to describe these reactions (SBML, CellML,
and MML) and the solvers used for the ODE solutions do not
support the concept of spatial extent. FieldML has been devel-
oped to support spatial gradients in biological models, but it is
not widely used.

Support for spatial variation has traditionally been incorpo-
rated within the ODE environment by defining separate com-
partments and labeling the molecular components separately
for each compartment. A particularly successful example is the
quantitative comparison of the clearance rates of erythroprotein
and an analog molecule called ESPN [24], where the model
differentiates between concentrations both inside and outside of
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the red cell membrane. In another example, Ca++ in the fluid
and tissue surrounding a cell, in the cytosol inside that cell, and
in the golgi of the cell are considered independent species, with
ODE components describing the transition of one of one pseu-
dospecies to another [25], [26]. In this example, external Ca+-+
could not interact with cytosolic components until transformed
into cytosolic Ca++ by an ODE-modeled calcium channel.

Just as the molecular dynamics calculations to determine
protein—protein interaction strengths require levels of approxi-
mation to the atomic force fields to solve the many-body calcula-
tions, the multiple-compartment approach to spatial variation is
afirst step toward a more complex 3-D description. It has proven
very useful with many models, as evidenced in the collection
in Biomodels.net [23]. However, more complex problems in-
volving true spatial variation, such as the spreading of the heart
depolarization wave in time across the myocardium, require a
full 4-D calculation to be meaningful [27]. Even at that level, the
smaller cellular scales are represented by lumped models and
heuristics that provide species transport between lumped ele-
ments. A comprehensive vocabulary for representing multiple
compartments in ODEs is not yet in place.
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